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Abstract

This study addresses a significant gap in the existing literature by examining
the association between weather variables, i.e. temperature and precipitation,
and food price inflation at monthly frequency. Using a comprehensive panel
dataset that spans 23 years of data for 186 countries, we explore this relation-
ship in depth. Furthermore, we employ panel quantile regression techniques to
investigate how weather-related variables influence food price inflation across
different quantiles of inflation. Our findings reveal three key results. First, we
establish that weather variables play a crucial role in explaining inflation, with
temperature generally having a negative coefficient with inflation contempora-
neously. In contrast, precipitation appears to have a positive coefficient, and
the strength of these associations varies across different inflation quantiles.
In addition, although the contemporaneous effect is negative, the cumulative
inflationary effect of 1◦C temperature increase reaches up to 0.6 percentage
points. Subsequently, our results demonstrate sensitivity to the method of clus-
tering the panel of countries, indicating the importance of methodological con-
siderations in such analyses.
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1 Introduction

As articulated in the most recent publication by the Intergovernmental Panel on Cli-
mate Change, it has become undeniably clear that anthropogenic factors are the pri-
mary drivers of greenhouse gas emissions, which have decisively contributed to global
warming.1 This phenomenon is evidenced by the observed increase in global surface
temperature, which has risen by 1.1◦C above pre-industrial levels (1850–1900) during
the period 2011–2020. Projections related to climate change indicate a potential esca-
lation in global mean temperature by up to 4◦C over the forthcoming century. This trend
is anticipated to exert profound impacts on various economic indicators.

Climate change is getting increased attention not only within the academic and busi-
ness arena across various disciplines but also among central banks, with explicit man-
dates for price stability. This heightened focus stems from the impact of climate change
on their capacity to maintain price stability. As the repercussions of climate change
become progressively more pronounced, comprehending its implications has become
very important. Extensive research has been undertaken to assess the influence of
climate variables, particularly temperature and precipitation fluctuations, on numerous
economic and agricultural dimensions. These include GDP growth as well as crop
yields, agricultural output, and the pricing dynamics of agricultural and food products.

A growing literature on climate-economic activity nexus unanimously suggests a
negative relationship between higher temperature and economic output.2 This rela-
tionship is clarified through the application of diverse methodologies, climate data, and
clustering techniques, which include the incorporation of various dummy variables and
their interactions, as well as non-linearity within the models. Such analyses reveal het-
erogeneous effects of climate change, underscoring the complex dynamics at play. Re-
search has demonstrated that the economic impacts of climate change tend to be more
severe in low-income and developing countries. For instance, Dell et al. (2012) found
significant adverse effects of higher temperatures on economic performance in poorer
countries. Similarly, Kalkuhl and Wenz (2020) highlighted the heightened vulnerability
of low-income countries to climatic shifts, and Cevik and Jalles (2023) provided further
evidence of the disproportionate economic burden borne by these nations. Additionally,
Ciccarelli and Marotta (2024) reinforced these findings, emphasising the critical need
for nuanced policy interventions tailored to mitigate the specific challenges faced by
economically disadvantaged countries.

While there is broad consensus on the interplay between climate change and eco-
nomic activity, there remains a lack of clarity regarding its inflationary effects. The
impact on prices is complex and sometimes contradictory.3 As articulated by Natoli
(2023), this ambiguity may arise from the significant influence of temperature changes

1See Lee et al. (2023) for details.
2See Dell et al. (2012), Burke et al. (2015), Colacito et al. (2019), Felbermayr and Gröschl (2014), Acevedo et al.

(2020), Cevik and Jalles (2023), Kolstad and Moore (2020), Ciccarelli and Marotta (2024) and Kim et al. (2021).
3See Mukherjee and Ouattara (2021), Faccia et al. (2021) and Natoli (2023).

2



on both the demand and supply sides of the economy. On the supply side, extreme tem-
peratures can disrupt agricultural yields and industrial productivity, potentially leading to
higher prices. Conversely, on the demand side, temperature variations can alter energy
consumption patterns, such as reduced heating needs in warmer winters or increased
cooling demands in hotter summers, which can influence energy prices in opposing
directions. These opposing forces can offset each other, making it difficult to predict
the overall effect on inflation over different time horizons. Therefore, the net impact
of climate change on inflation remains an intricate subject requiring further empirical
investigation and meticulous understanding.

This study contributes to the relatively underexplored literature on the inflationary
consequences of climate change. Early research, such as that by Parker (2018) and
Heinen et al. (2019), primarily investigates the impact of natural hazards on consumer
price inflation, with a focus on sub-components such as food, housing, and energy.
Faccia et al. (2021) find that extreme temperatures, particularly those occurring dur-
ing summer, have a long-lasting impact on inflation, primarily through food prices, a
phenomenon that is particularly evident in emerging economies. Similarly, Lucidi et al.
(2024) demonstrate that high spring-summer temperatures increase headline inflation
in major eurozone countries. Mukherjee and Ouattara (2021) provide compelling evi-
dence on the significance of temperature shocks on inflation in developing countries,
noting that the effects of such shocks can persist for several years, thereby posing sub-
stantial risks to monetary policy.

According to Kabundi et al. (2022), the inflationary impact of temperature shocks
is contingent on the type and intensity of the shocks, the income level of the country,
and the prevailing monetary policy regimes. In a recent paper, Ciccarelli et al. (2023)
highlight significant country-specific asymmetries and seasonal responses of inflation
to temperature shocks, which primarily affect food, energy, and service prices. Kotz
et al. (2024) employ fixed-effects regressions on over 27,000 observations of monthly
consumer price indices to quantify the impacts of climate conditions on inflation. Their
findings reveal that higher temperatures lead to persistent increases in both food and
headline inflation over 12 months in both high and low-income countries. This hetero-
geneity in the impact of temperature change on inflation is further supported by the
work of Cevik and Jalles (2023). Their findings underscore the varying effects across
different economic contexts.
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Figure 1: Food price inflation, temperature and precipitation

In this study, we investigate the impact of temperature and precipitation on food price
inflation, contributing to the academic literature with two critical research questions.
First, does the association between weather variables and food price inflation vary when
food inflation is at its upper or lower extremes? Second, does this association differ
more significantly due to a country’s geographic location rather than its income level or
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the size of its agricultural sector?

Figure 2: Temperature and precipitation by different income levels and regions

We assess these two research questions using a dataset, which consists of monthly
observations for 186 countries from 2000 to 2022. Figure 1 shows a scatterplot-histogram
and a linear fit of the relevant variables that we studied in this paper. The Food and
Agriculture Organization of the United Nations (FAO) provides country-level food price
inflation data at a monthly frequency. Although the use of monthly data has certain con-
straints, it facilitates the analysis of 51,150 observations in total, allowing for a compre-
hensive examination of the dynamics between climate change and food price inflation
and the heterogeneity of these effects across different regions and countries. Existing
scholarly literature, including studies by Colacito et al. (2019) and Faccia et al. (2021),
indicates that the impact of climatic factors on macroeconomic variables intensifies with
higher data frequency. By employing monthly data, this research aims to offer a detailed
understanding of the intricate relationship between climatic changes and food price in-
flation. Figure 2 illustrates the temperature and precipitation averaged over 2000-2022
by region and income. We can easily observe the differences between temperatures
and precipitation between tropical regions and non-tropical regions.

Our empirical framework quantifies the plausible effects of weather variables using
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fixed-effects panel regression models, exploiting within-country variation. Country-fixed
effects account for unobserved differences between countries, while the use of year-
fixed effects accounts for contemporaneous common shocks. We adjust weather vari-
ables and the food price index series for seasonality before including it in the analysis
to account for country-specific seasonality. Our study does more than just focus on the
median or mean effects, which are commonly addressed in existing literature. We direct
our attention towards the upper and lower quantiles under the premise that tail events
may become more frequent in the context of a delayed transition to a net-zero econ-
omy. This aspect of our research provides new insights into the potential intensification
of extreme outcomes under varying climate scenarios, thereby contributing to a more
nuanced understanding of the broader economic implications of climate change. While
ordinary regression analysis estimates the conditional expectation of the mean, quantile
regression makes it possible to examine the shape of the entire distribution through the
estimation of quantile points. Such an approach is particularly insightful as it enables
us to discern both the impact of extreme climate events on food price dynamics and its
implications on food price inflation at the extreme ends of the spectrum.

Through our analysis, we have obtained several significant results. First, feed-
back effects are crucial, and ignoring them may lead to misleading conclusions. When
analysing a large number of countries and high-frequency data, it is essential to account
for lagged inflation. Second, our estimates indicate that higher temperatures initially re-
duce food inflation significantly. However, the cumulative effect is inflationary after a
year. We also find that at the higher percentiles of inflation, the immediate response to
temperature change is relatively larger and more significant. Yet, the cumulative effects
are nearly identical across quantiles. Third, when we cluster the countries with respect
to their income level, our overall regression analyses do not suggest any significant
differential temperature effect between high-income and low-income countries. Lastly,
unless inflation is decomposed into its quantiles, we find no difference in the response
of inflation to temperature changes between agricultural and non-agricultural countries.
However, evidence indicates that when inflation is in the upper quantile for an agricul-
tural country, food price inflation tends to decrease significantly in response to a rise in
temperature.

Regarding precipitation, our results suggest a relatively small association between
precipitation and food price inflation. Although small, the overall impact is significant and
positive. When interaction dummies for income and agriculture are included, the effect
of precipitation on food price inflation is significantly negative for low-income countries
but positive for agricultural countries. Quantile regression analysis provides evidence
of the differential effects of precipitation on lower and upper quantiles. In low-income
countries, an increase in precipitation has an inflationary impact when inflation is low
and a deflationary impact when inflation is high. Conversely, the opposite relationship
is observed for agricultural countries, i.e., an increase in precipitation has a deflationary
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impact when inflation is low and an inflationary impact when inflation is high. This means
that if a low-income country is already struggling with high levels of food price inflation, a
precipitation increasewill make things worse. This result has very important implications
for low-income countries as these countries have a higher share of food prices in their
consumer basket.

This paper is organised as follows. Section 2 presents the details of the data and
dummy variables we used for this study. Section 3 describes the methodology used in
the analysis. Section 3.1 describes our baseline panel regression with fixed effects, and
section 3.2 demonstrates how we extend our baseline results to different quantiles of
food price inflation. Section 4 discusses our key results. Section 5 provides robustness
checks and additional findings, and section 6 concludes.

2 Data

Climate Data
The country-level monthly mean surface temperature and precipitation are taken

from HAVER Analytics. The data set is consistent with those in the World Bank Cli-
mate Change Knowledge Portal (CCKP).4 CCKP historical data originates from obser-
vational datasets and allows users to understand past and current climate contexts. Ob-
served, historical climate data is generated from thousands of weather stations world-
wide, which collect temperature and rainfall data in a continuous manner or from satel-
lites. Observed data presents mean, minimum and maximum temperatures and pre-
cipitation. Observational data is sourced from the Climatic Research Unit (CRU) of the
University of East Anglia. CRU provides gridded historical datasets derived from obser-
vational data and quality-controlled temperature and rainfall data, as well as derivative
products such as monthly and long-term historical climatologies. CRU data is widely
accepted as a reference dataset in climate research.5 Observed data is presented at a
spatial resolution, 0.5◦ x 0.5◦ (50km x 50km). Monthly mean surface temperature and
precipitation are restricted to December 2022, and that is the reason why our analysis
is restricted to that period. The descriptive statistics of climate data at the country level
are illustrated in the Appendix.6

Dummy variables
Regional dummy
We classified countries according to whether they are tropical or not. We used the

World Population Review ’Tropical Countries 2024’ classification to come up with our
regional dummy variable.7 Tropical countries are located in the belt-shaped region of

4See WorldBank (2021) for details.
5See Alessandri and Mumtaz (2023) for details.
6See Table A1 and A2.
7Data source is available in https://worldpopulationreview.com/country-rankings/tropical-countries
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the Earth closest to the Equator, horizontally bordered by the Tropic of Cancer (23◦) to
the north and the Tropic of Capricorn (23◦) to the south. These countries make up about
40% of the planet’s surface area and host about 40% of the world’s population. Tropical
countries tend to have hotter, wetter, more humid weather than countries located in the
middle latitudes/temperate regions and the polar regions. Most tropical countries have
average monthly temperatures of 18◦C (64.4◦F) or higher, and the year consists of two
seasons: the wet/rainy and the dry season. Subtropical countries are geographical
and climate zones to the north and south of the tropics. Geographically, part of the
temperate zones of both hemispheres cover the middle latitudes from 23◦26’ to about
35◦ north and south. According to the 2024 World Population Review report, Argentina,
Chile, China, Egypt, and the United States are classified within the subtropical region.
Conversely, North Korea, South Korea, Morocco, Bhutan, Nepal, and Tunisia are not
categorised as tropical regions. For our study, we adhere to this classification system
to assign countries to their respective climatic regions.

Income dummy
The income dummy is constructed using the World Bank income classification for

2022. Hence, countries are classified into four groups. Low-income countries are those
with a gross national income (GNI) per capita of 1,135 US dollars or less; Lower-middle-
income countries are those with a GNI per capita between 1,136 and 4,465 US dollars;
Upper-middle-income countries are those with a GNI per capita between 4,466 and
13,845 US dollars; High-income countries are those with a GNI per capita of 13,846 US
dollar or more. Four different income dummies are defined for each income level, and
the dummy variable takes one if the country is in the relevant income group.

Agricultural dummy
To compute the agricultural country dummy, we first obtained the data on the share of

agricultural value added in GDP for the period 2000-2022 from the World Bank. Then,
we calculated the period average for each country. The agricultural country dummy
variable takes the value of 1 if the country average is above the overall mean and zero
if it is below.
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Figure 3: Monthly food price inflation in agricultural and non-agricultural countries

Food price inflation
For this study, we employ the FAO monthly food price index statistics spanning

from January 2000 to December 2022. This dataset includes national-level food price
data for 203 countries. Despite the relatively brief time span, the extensive coverage
of countries facilitates a more enriched cross-country analysis. Due to the absence of
monthly data for Australia and significant data gaps or fluctuations in several island na-
tions, these countries were excluded from our final dataset. Consequently, our analysis
encompasses 186 countries, enabling us to account for cross-country heterogeneity ef-
fectively. While alternative cross-country food price indices, such as those developed
by Ha et al. (2023), are available, they cover a significantly smaller number of countries
compared to the FAO dataset. Hence, the FAO dataset offers a more comprehen-
sive and reliable foundation for our comparative analysis, enhancing the robustness
and validity of our findings by leveraging a broader and more detailed dataset. Figure
3 presents the aggregated food price inflation data for countries with high agricultural
value added and those with low agricultural value added. The disparity in food price
inflation between these two groups is clearly visible, and we will explore this difference
in greater detail in subsequent sections, particularly in the context of clustering analysis.

Prior to conducting the regression analysis, both the food price data and the tem-
perature and precipitation data were deseasonalised using the TRAMO-SEATS proce-
dures. This methodological approach ensures that the seasonal effects are removed,
providing a clearer picture of the underlying trends. In alignment with the methodology
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employed by Kotz et al. (2024), our benchmark regression analysis utilises month-on-
month inflation rates as the primary dependent variable. These rates are calculated as
the first difference in the logarithm of the food price index. This approach allows for a
more precise estimation of the dynamic relationship between food prices and the cli-
matic variables under consideration. The descriptive statistics of food price inflation at
the country level are illustrated in the Appendix.8

3 Empirical Methodology

In this section, we develop the empirical framework for analysing the impact of temper-
ature and precipitation on food price inflation. Our panel regression analysis adjusts
standard errors for clustering at the regional level based on the hypothesis that a coun-
try’s sensitivity to climate change is predominantly influenced by its latitudinal charac-
teristics rather than its income level. The regional dummy variable is defined according
to the classification provided by the World Population Review classification.9 Figure 1
clearly demonstrates that clustering becomes evident when the latitudinal characteris-
tics of countries are taken into account. To ensure the robustness of our results, we
also adjust standard errors for clustering at the income level. Furthermore, we present
our results without clustering adjustments to offer a comprehensive analysis.

Our analytical framework addresses autocorrelation by incorporating lagged values
of inflation, thereby controlling for feedback effects. Furthermore, we employ a highly
flexible model by including lagged variables for both temperature and precipitation. This
allows us to investigate both the immediate and cumulative impacts of these climatic
factors on food price inflation. By testing the immediate and cumulative effects of cli-
mate change, our approach makes a significant contribution to the existing literature.
Moreover, it explores how these effects manifest across different levels of inflation ex-
tremes. This comprehensive methodology provides a nuanced understanding of the
temporal dynamics and variability in the relationship between climate variables and in-
flation, enhancing the robustness and depth of our empirical findings.

3.1 Panel fixed effect model

We consider three panel fixed effect regressions. Our empirical analysis is similar to
Dell et al. (2012), yet our dependent variable and research question are different. We
also use intra-annual frequency for all our empirical estimations. In our first panel fixed
effects specification, inflation is modelled as:

INFi,t = αi + γt + βsXs,i,t + εi,t (1)

8See Table A3.
9Source: https://worldpopulationreview.com/country-rankings/tropical-countries
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where INFi,t is the food price inflation for country i at time t. Xs,i,t is monthly average
of s, where s is a matrix composed of temperature and precipitation. αi, for i = 1...N

capture the country i fixed effects and γt, for t = 1...T are time fixed effects. βs is the
slope coefficient to be estimated for each s, showing the impacts of climate shocks on
food price inflation. εi,t is an error term clustered simultaneously by region.

In our second panel fixed effects specification, we extend the basic model above
to control for auto-correlation by adding up to 12-period lagged inflation. Therefore,
inflation is modelled as:

INFi,t = αi + γt + βsXs,i,t +
12∑
k=0

ϕkINFi,t−k + εi,t (2)

where ϕk is the vector of unknown parameters to be estimated and shows the rela-
tionship between current inflation and its lags. The size and significance of ϕk provide
information about the inflationary feedback.

According to Dell et al. (2012) and Colacito et al. (2019), distinguishing between
the immediate and cumulative effects of climate shocks is essential because the effects
on the macroeconomic variable (in our case, inflation) accumulate over time and may
becomemore quantitatively important than the immediate effects. Therefore, in our third
panel fixed effects specification, we account for the immediate and cumulative effects
of climate shocks by adding lags of temperature and precipitation to our model.

INFi,t = αi + γt +
L∑

j=0

βs,jXs,i,t−j +
12∑
k=0

ϕkINFi,t−k + εi,t (3)

where βs,j are unknown slope parameters to be estimated for j = 0...L lagged climate
related variables.

When βs,j = 0 and βs = 0, then there is no temperature or precipitation impact on
food price inflation. In the model with lags, we separately test the immediate, βs,0 = 0,
and accumulated,

∑L
j=0 βs,j = 0, effects of each climate shocks from s.

3.2 Quantile regression model

Our quantile panel regressionmodel is based on thework of Machado and Silva (2019).10

Machado and Silva (2019) builds on the quantile regression literature and study the con-
ditions under which it is possible to estimate regression quantiles by estimating condi-
tional means. They propose a method for estimating conditional quantiles by combining
estimates of the location and scale functions, which are obtained from the conditional
expectations of appropriately defined variables. Their method has the advantage of
allowing the use of techniques applicable solely to conditional means, such as differ-
encing out individual effects in panel data models, while also offering insights into how

10Koenker and Bassett Jr (1978), Koenker and Hallock (2001) and Koenker (2005) are authoritative references in
the quantile regression analysis. See also Gutenbrunner and Jurecková (1992), He (1997), Zhao (2000)
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regressors impact the entire conditional distribution. Additionally, their approach en-
sures that the estimated regression quantiles do not cross.

Based on the work of Machado and Silva (2019), we consider the estimation of the
conditional quantiles QINF (τ |Xs,i,t) for a location-scale model of the form:

INFi,t = αi + γt + βsXs,i,t + (δi + Z ′
i,tλ)εi,t (4)

with Pr{δi+Z ′
i,tλ > 0} = 1 The parameters αi and δi capture the individual fixed effects.

The sequence Xs,i,t is strictly exogenous, i.i.d. for any fixed i, and independent across
i. εi,t are i.i.d. (across i and t), statistically independent of Xs,i,t, and normalized to
satisfy the moment conditions E(ε) = 0 and E(|ε|) = 1.

The model above implies that:

QINF (τ |Xs,i,t) = (αi + δiq(τ)) +X ′
s,i,tβs + Z ′

i,tλq(τ) (5)

The scalar coefficient αi(τ) = αi + δiq(τ) represents the quantile-τ or the distributional
fixed effect for individual i at τ . The distributional effect represents the effect of time-
invariant individual characteristics which, like other variables, are allowed to have dif-
ferent impacts on different regions of the conditional distribution of INFi,t. αi, then, can
be interpreted as the average effect for individual i, due to the fact that

∫ 1
0 q(τ) dτ = 0.

The model is estimated using the method of moments quantile regression method.11

The general procedures followed in the estimation of (5) are summarised as follows:
Step 1: Regress (INFi,t−

∑
INFi,t/T ) on (Xs,i,t−

∑
Xs,i,t/T ) by OLS to attain β̂s;

Step 2: Estimate α̂i = 1/T
∑

(INFi,t − X ′
s,i,tβ̂s) and obtain A the residuals ϵ̂i,t =

INFi,t −X ′
s,i,tβ̂s;

Step 3: Regress |ϵ̂i,t| −
∑

|ϵ̂i,t|/T on Zi,t −
∑

Zi,t/T to attain λ̂;

Step 4: Estimate δ̂i = 1/T
∑

(|ϵ̂i,t| − Z ′
i,tλ̂);

Step 5: Estimate qτ by q̂, solution to minq
∑

i

∑
t ρτ (ϵ̂i,t − (δ̂i + Z ′

itλ̂)q);

where qτ (A) = (τ − 1)AI{A ≤ 0}+ τAI{A > 0} is the check-function.
A general form of the quantile regression with lags and auto-correlation components

can be written as follows:

QINF (τ |Xs,i,t) = (αi + δiq(τ)) +
L∑

j=0

βs,jXs,i,t−j +
12∑
k=0

ϕkINFi,t−k + Z ′
i,tλq(τ) (6)

Then, similar procedures above can be followed to test the significance of the im-
mediate and cumulative effects of climate shocks on food price inflation.

11The Stata procedure mmqreg provided by Santos Silva was used to obtain the method of moments quantile
regression estimates.

12



4 Results

4.1 Baseline regression results

Table 1 evaluates the null hypothesis that temperature and precipitation do not affect
food price inflation. Models represented by Table 1 do not incorporate lagged variables
or terms for autocorrelation. To assess the potential for a non-linear relationship be-
tween weather variables and food price inflation, the squared terms of temperature and
precipitation are included. The table presents results from both panel fixed effects mod-
els and quantile regression analyses. Specifically, four distinct models are examined.
The first model (Model 1 column of Table 1, FE) employs robust standard errors within
a linear framework, while the second model (Model 2 column of Table 1, FE_clus) ad-
justs standard errors for regional clustering. The third and fourth models (FE_NL and
FE_NL_clus) represent the non-linear counterparts of the first and second models, re-
spectively, incorporating the squared terms of the climatic variables. By comparing
these models, we aim to discern the linear and non-linear impacts of temperature and
precipitation on food price inflation, providing a comprehensive analysis of these effects
under different statistical assumptions.

In classifying regions, we categorise countries into three groups: tropical, subtropi-
cal, and others. This grouping deviates from traditional classifications in the literature.
However, we posit that a country’s latitudinal location holds greater significance than
conventional geographical classifications when examining the relationship between cli-
mate change and economic variables, specifically food prices.

The first column of Table 1 reveals a significant negative relationship between tem-
perature and food price inflation, on average, across all countries. This negative rela-
tionship is plausible since the dependent variable is month-to-month inflation. Discrep-
ancies can occur when harvesting periods, temperature increases, and inflation realisa-
tions do not coincide, leading to unexpected results in the current period. Ciccarelli et al.
(2023) examine the seasonal impact of temperature on food inflation, distinguishing be-
tween processed and unprocessed foods, and confirm the lagged and heterogeneous
effects of temperature changes across different seasons. In the subsequent section, we
explore the cumulative effects of temperature, although our data do not allow for a de-
tailed distinction between processed and unprocessed foods. The estimated coefficient
for precipitation is also significant but positive. Column 2 shows no significant change
in the estimated coefficients when robust standard errors are adjusted for clustering at
the regional level. Additionally, Columns 2 and 3 do not provide evidence supporting
nonlinear effects, as the respective estimated coefficients are statistically insignificant.
Consequently, the panel fixed effect models suggest that, on average, a 1◦C increase
in temperature decreases food price inflation by 0.04 percentage points. In compari-
son, a 1 unit (100 mm) increase in precipitation increases food price inflation by 0.0003
percentage points.
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Next, we evaluate the changing impact of climate variables on food price inflation
in different ranges of food price inflation. Model 5 to Model 12 of Table 1 focuses on
this particular evaluation, reporting the results from the quantile regression analyses for
the events at tails, namely lower (q=0.10) and upper (q=0.90) quantiles of food price
inflation. Columns 5-8 report the regression results for the lower quantile, where food
price inflation is relatively low. These columns elucidate how temperature and precip-
itation influence food price inflation when it is in the lower decile of the distribution. In
contrast, columns 9-12 provide the regression results for the upper quantile, where food
price inflation is relatively high. This allows us to explore the effects of climate variables
when food price inflation is in the upper decile of the distribution.

The comparison of columns 5 and 9 (Model 5 and 9) reveals that the estimated
coefficients for temperature are both negative and significant across the lower and upper
quantiles. Notably, the impact of temperature on food price inflation in the upper quantile
is precisely double that observed in the lower quantile. This indicates a substantially
stronger relationship between temperature shocks and food price inflation in countries
experiencing high food price inflation. This conclusion remains valid even when using
clustered robust errors.

Additionally, the statistical significance of the precipitation effect appears sensitive
to model specification. The relationship between precipitation and food price inflation
intensifies when standard errors are adjusted for clustering at the regional level. Specifi-
cally, an additional 100 mm of monthly precipitation is associated with a 0.0002 percent-
age point increase in food price inflation in the lower quantile. In contrast, it contributes
an additional 0.0001 percentage points in the upper quantile. This result is expected,
given the fact that tropical regions have much higher precipitation levels compared to
other regions.

However, it is important to note that the estimation results for the upper quantile are
particularly sensitive to non-linearity, indicating that these findings should be interpreted
with caution. This sensitivity underscores the complexity of the relationship between
climatic variables and food price inflation, necessitating careful consideration of model
specifications.

Figure 4 plots the estimated coefficients for temperature and precipitation over the
different quantiles of food price inflation. It shows that the impact of temperature on
inflation increases with the increase in inflation level. The effect varies between -0.02
and -0.05 as the inflation quantile increases from 10 to 90. Figure 4 also illustrates that
the change in the coefficient of precipitation over different quantiles is much smaller yet
significant.

4.2 Model with lagged dependent variables

Our baseline model, with no lags of the dependent and independent variables, pro-
vided supporting evidence not only on the link between food price inflation and climate
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Figure 4: Quantile Plot (Table 1-Model 5)

variables but, more importantly, differentiating the impact between high and low food
price inflation events. In this section, we include up to 12 lags of food price inflation in
regression analysis to control for the possible influence of auto-correlation on the dy-
namics of the temperature and precipitation effects. None of the models include lags of
temperature or precipitation yet.

Table 2 illustrates that the point estimates of temperature for Model 1 and Model 2
remain negative, and there appears to be a slight increase in their size. The estimated
parameters remain negative and stable even after accounting for non-linearity. When
we consider the quantile regressions, results are negative and stable if standard errors
are adjusted for clustering at the region. The estimated coefficients of temperature and
precipitation for the upper tail are relatively larger than those for the lower tail. To save
space, we do not include the lags of inflation in Table 2.

Table 3 shows that there is no significant change in the results even if we keep only
the first and 12th-month lags of food price inflation in the regression analyses. Table 3
also points out that current inflation is positively and significantly related to the previous
month’s inflation. The relationship is statistically strong, showing that a one percentage
increase in inflation increases current-period inflation by about 0.23 percentage points
for the entire sample. The feedback effect is approximately twice as large for the upper
quantile, while it is statistically insignificant for the lower quantile.
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4.3 Model with lags of temperature and precipitation

In this section, we consider more flexible models and add 12 lags of both temperature
and precipitation to our regression analysis. By doing this, we aim to account for both
immediate and cumulative effects of climate changes described in Section 3 to assess
better the dynamics of the relationship between temperature as well as precipitation
and food price inflation.

Regression results, including temperature lags, are summarised in Table 4. Those,
including precipitation lags, are reported in the section where we discuss robustness
checks. The bottom row of each column of Table 4 reports cumulative effects calculated
by summing the coefficients of the respective temperature variables and their lags.

The estimated coefficients for temperature and precipitation remain stable after the
addition of temperature lags. There is no change in feedback effects either, except
that if standard error is not adjusted for clustering, the coefficient for the upper quantile
becomes insignificant. In addition, the cumulative and immediate effects of tempera-
ture have opposite signs. Table 4 shows that the cumulative effects of temperature are
positive and statistically significant at one percentage level. Temperature shock may
reduce food inflation due to level effects, but once temperature shock disappears, level
effects are expected to reverse. The coefficient of the lags of temperature does not sum
up to zero and, in fact, is significantly positive, suggesting that the impact of temper-
ature persists over a year and is inflationary. Food price inflation gradually adjusts to
temperature shock.

Statistical significance and size of the coefficients do not vary between upper and
lower quantiles. A 1◦ C temperature rise produces about 0.051 percentage point in-
crease in monthly food price inflation. However, quantile regressions suggest that clus-
tering is a decisive factor in determining the statistical significance of this cumulative
effect.

Moreover, the size of the cumulative effect is larger than the absolute size of the
immediate effect, and this difference is larger for the lower quartile. These outcomes
are primarily important and imply that food price inflation adjusts gradually with rising
temperatures. The adjustment process is higher if inflation fluctuates at lower rates.

4.4 Model with lags of temperature, precipitation and interaction dum-
mies

The previous sections confirm that the immediate and cumulative effects of temper-
ature are significant factors in determining food price inflation. It also underlies the
significance of clustering in such an analysis. This section considers extending the
models above to examine if income differences, as well as the size of the agricultural
sector, play important roles in determining the magnitude and significance of temper-
ature effects. The majority of cross-country papers published within the framework of
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the macroeconomic effects of climate change assess the results with respect to whether
the relevant country is advanced or developing. So, we would like to include this factor
in our analysis.

To better understand if income differences and whether a country is agricultural or
not matter in the relationship between climate change and food inflation, we interact
temperature and precipitation with each income and agricultural dummy. Table 5 re-
ports the impact of climate change on food price inflation in low-income and agricultural
countries. The interaction coefficient between low income (income dummy=4) and tem-
perature is positive for all clustered cases. It is statistically significant for low quantiles,
indicating that the temperature effect is significantly different in low-income countries
with low food price inflation. A 1◦ C temperature increase produces about 0.086 per-
centage point extra inflation in food inflation for low-income countries whose inflation is
in the lower tail.

More interestingly, Table 5 indicates that precipitation has a significantly different
effect in low-income countries. In low-income countries, the effect is generally signifi-
cantly negative (e.g. column 4), but in those countries with low inflation rates, the effect
turns positive.

Turning to the coefficients associated with the agricultural dummy, estimates are sta-
tistically insignificant, indicating no substantial heterogeneity in the effect of temperature
on food price inflation between agricultural and non-agricultural countries. However, the
last column of Table 5 points out that if food inflation in an agricultural country is in the
upper tail, then temperature rise tends to have a deflationary impact. The estimated
coefficients for the interaction dummy between agriculture and precipitation are statis-
tically significant and positive (column 4). Hence, precipitation has an extra impact on
food inflation in agricultural countries. The impact is statistically significant for the lower
quantile rather than the upper quantile.

Figure 5 plots the estimated coefficients for temperature, precipitation, agricultural
country dummy and the interaction term of low-income countries with temperature over
the different quantiles of food price inflation. The coefficient of temperature is negative
over all the quantiles, and it increases with rising food price inflation. The coefficient of
precipitation is positive and gets stronger at the higher tail of food price inflation. The
coefficient attached to the agricultural dummy is significantly bigger and starts negative
on the lower ranges of inflation and ends up positive when the inflation is at its highest
quantile. The interaction dummy between low-income countries and temperature is
always negative, and it gets bigger at the higher quantiles of inflation.
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Figure 5: Quantile Plot (Table 5-Model 6)
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5 Robustness checks

In this section, we first consider robustness checks for including clustering using income
and then clustering both income and region at the same time and conducting a two-way
clustering. We use the community-contributed regression command reghdfe of Stata
for using two clusters at the same time.12 In Table 6, we check the robustness by using
standard errors adjusted for clustering at the income level rather than the regional level.
Table 7, on the other hand, adjusts standard errors for two-way clustering at both income
and region levels.

The results are generally robust when using standard errors adjusted for clustering
at the income level (Table 6). However, the estimated feedback effect for the lower
quantile becomes statistically significant at the 10 percent level. In Table 7, it was not
possible to attain significant results for the tails, indicating the sensitivity of the results
to clustering specifications.

Table 8 presents the immediate and cumulative impact of precipitation. The bottom
part of the table reports the cumulative effects, computed by summing the estimated co-
efficients of lagged precipitation. Including lags of precipitation does not cause substan-
tial changes in our regression estimates. Overall, the immediate impact of precipitation
is positive and significant. However, for extreme events, precipitation has a significant
immediate effect when standard errors are adjusted for clustering at the regional level.
There is no support for the significance of the cumulative effects, suggesting that the
level effect of precipitation on inflation sums to zero and gradually disappears within a
year.

These robustness checks underscore the importance of considering different clus-
tering approaches when analysing the impact of climatic variables on inflation. The
results highlight the sensitivity of the estimated effects to the chosen clustering method,
particularly for extreme events and lower quantiles.

12See Correia (2023) for details.
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Table 7: Results of Baseline equation with 1st and 12th lag of inflation:Standard errors
are adjusted for two way clustering at region and income

(Model 1) (Model 2) (Model 3) (Model 4)
Coefficients FE FE_clus FE_NL FE_NL_clus

Temperature -0.0378*** -0.0378** -0.0269*** -0.0269
(0.0055) (0.0087) (0.0088) (0.0132)

Precipitation 0.0003** 0.0003* 0.0005** 0.0005
(0.0001) (0.0001) (0.0002) (0.0003)

Temperature2 -0.0005 -0.0005
(0.0004) (0.0010)

Precipitation2 -0.0000 -0.0000
(0.0000) (0.0000)

Food price inflation (t-1) 0.2278*** 0.2278 0.2278*** 0.2278
(0.0270) (0.0855) (0.0270) (0.0860)

Food price inflation (t-12) 0.0603*** 0.0603 0.0604*** 0.0604
(0.0173) (0.0444) (0.0173) (0.0469)

Constant 1.0636*** 1.0636** 1.0448*** 1.0448**
(0.1095) (0.1688) (0.1117) (0.2267)

Observations 48,918 48,918 48,918 48,918
R-squared 0.1476 0.1476 0.1477 0.1477

Notes: All specifications include country and year fixed effects. All
models, including the term ”clus” have robust standard errors in paren-
thesis adjusted for clustering. Temperature is in degrees Celsius, and
precipitation is in units of 100 mm.
Robust standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.1
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6 Conclusion

In this study, we examine the effects of seasonally adjusted temperature and precip-
itation on food price inflation across 186 countries from 2000 to 2022, using monthly
data. We use both panel-fixed effects and quantile regressions to report our results.
Our findings indicate that an increase in monthly temperature significantly impacts food
price inflation both immediately and persistently. Although the effect of precipitation is
also significant, it is less severe. These results align with the existing literature on the
relationship between food price inflation and weather variables.

Our results illustrate that the contemporaneous impact of a temperature change on
inflation is usually negative, which can be attributed to the temperature change’s non-
coincidence with the immediate realisation of inflationary effects. This initial negative
impact likely reflects short-term disruptions and adjustments that do not immediately
translate into price changes. However, our analysis reveals that inflation continues to
respond to temperature changes even after the initial shock has dissipated. Over time,
the cumulative effects of these temperature changes result in elevated levels of inflation.
Meanwhile, we find the contemporaneous impact of a precipitation change on inflation
is positive.

These findings are consistent with previous studies, such as those by Mukherjee
and Ouattara (2021) and Kotz et al. (2024), which document the persistent impacts of
temperature increases on inflation. Our study further demonstrates that the immediate
effect of a temperature rise is more pronounced when inflation is already at a higher
level. This suggests that countries experiencing higher initial inflation rates are more
vulnerable to immediate inflationary pressures from temperature shocks.

Moreover, the cumulative effects of temperature increases are found to be signifi-
cantly inflationary across all quantiles of inflation. This implies that while the immediate
impacts may vary depending on the pre-existing inflationary environment, the long-term
effects of temperature increases uniformly contribute to higher inflation. This under-
scores the importance of considering both immediate and cumulative impacts in as-
sessing the overall economic consequences of climate change. Our findings highlight
the necessity for policymakers to account for the temporal dynamics of climate impacts
on inflation. Immediate policy responses may need to be tailored to mitigate the short-
term disruptions, while long-term strategies should focus on addressing the persistent
inflationary pressures induced by climatic changes.

We also show that the impact of temperature and precipitation shocks may vary with
respect to the income level and the share of the agricultural sector in total economic ac-
tivity. Such heterogeneity is also noted in the literature. In addition, this study suggests
that the level of inflation across countries may cause them to respond differently to cli-
mate shocks even if they have the same income level or agricultural sector size. Our
findings strongly suggest that a change in temperature and precipitation levels leads
to a heterogeneous response to inflation, depending on whether the country is already
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struggling with high or low inflation. For countries that already have high levels of infla-
tion, temperature changes can create persistent pressures on inflation, complicating the
food pricing dynamics within and between countries. With progressing climate change,
we should expect a more diverse response of inflation to weather shocks.

Our results have two important policy implications. First, food prices and price
volatility can directly contribute to aggregate inflation, which is a primary concern of
monetary policy. Second, the relationship between high food prices and aggregate
inflation is multifaceted. Elevated food prices can erode purchasing power, dispropor-
tionately affecting lower-income households that spend a larger share of their income
on food. This can lead to increased poverty and food insecurity, exacerbating social in-
equalities. Furthermore, price volatility can create uncertainty in markets, disrupt sup-
ply chains and lead to inefficiencies in resource allocation. For central banks, these
dynamics present a dual challenge: maintaining price stability while also addressing
the broader economic implications of climate-induced price shocks.

The results of our paper can be interpreted as a warning for policymakers, i.e. mon-
etary policy should more comprehensively consider the risks created by climate change.
Traditional models of inflation forecasting and policy analysis may need to be adapted
to account for the increased uncertainty and long-term impacts associated with climate
change. This could involve integrating climate scenarios into economic models, im-
proving the monitoring of climate-related risks, and coordinating with other policy areas,
such as fiscal policy and environmental regulation, to mitigate the economic impacts of
climate change.

This study can be extended in several ways. First, while the literature generally
agrees on the impact of climate change on inflation, conclusions are often driven by
mean or median values. The present study highlights the increasing uncertainty in
inflation due to advancing climate change. Not only inflation but also the frequency and
intensity of climate shocks vary across regions and over time. Examining the economic
consequences of this volatility would significantly enhance our understanding of the
effects of climate change. Furthermore, future research could investigate the effects of
climate change on the subcomponents of consumer prices using quantile regression.
This approach would allow for the dynamic effects of climate shocks to be uncovered
across different segments of consumer price inflation, providing a more detailed and
nuanced analysis.
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Appendices

Descriptive statistics

Table A1: Seasonally adjusted temperature (Average of 2000-2022)

Rank Country Average Temperature Rank Country Average Temperature
1 Greenland -18.4225 94 Iraq 23.1715
2 Canada -4.01363 95 China, Hong Kong SAR 23.301
3 Russian Federation -3.60655 96 Egypt 23.3126
4 Mongolia 1.1387 97 Uganda 23.3987
5 Iceland 2.08637 98 Ethiopia 23.515
6 Norway 2.38155 99 Mauritius 23.5295
7 Finland 2.65978 100 Algeria 23.7157
8 Kyrgyzstan 2.91689 101 Guatemala 23.7801
9 Sweden 3.37905 102 Paraguay 24.0082
10 Tajikistan 4.13413 103 Lao People’s Democratic Republic 24.1965
11 Estonia 6.50351 104 French Polynesia 24.3377
12 Switzerland 6.66516 105 Mozambique 24.4875
13 Latvia 7.03456 106 Vanuatu 24.5019
14 Kazakhstan 7.32226 107 Dominican Republic 24.5504
15 Lithuania 7.5495 108 Timor-Leste 24.6037
16 Austria 7.63589 109 Sao Tome and Principe 24.6137
17 Belarus 7.6598 110 Cook Islands 24.704
18 China, mainland 7.71361 111 Papua New Guinea 24.741
19 Armenia 8.06411 112 Equatorial Guinea 24.7815
20 Andorra 8.42773 113 Honduras 24.7999
21 Czechia 8.82849 114 Fiji 24.8096
22 Poland 9.01171 115 Viet Nam 24.8199
23 Slovakia 9.07752 116 Costa Rica 24.8494
24 Denmark 9.10728 117 Congo 24.8806
25 Georgia 9.28066 118 Cameroon 24.9163
26 United Kingdom of Great Britain and Northern Ireland 9.35127 119 Haiti 24.9565
27 Chile 9.44741 120 Colombia 25.0417
28 Ukraine 9.54653 121 India 25.051
29 United States of America 9.57851 122 Puerto Rico 25.0628
30 Ireland 9.7626 123 Tonga 25.1059
31 Germany 9.78823 124 Kenya 25.2091
32 Slovenia 10.0713 125 El Salvador 25.3327
33 Montenegro 10.1967 126 Gabon 25.3361
34 Luxembourg 10.2118 127 Brazil 25.5649
35 Romania 10.4801 128 Panama 25.614
36 Bhutan 10.5057 129 Bahamas 25.6505
37 Bosnia and Herzegovina 10.6262 130 Bangladesh 25.7668
38 New Zealand 10.6778 131 Montserrat 25.7808
39 Netherlands (Kingdom of the) 10.6979 132 Belize 25.8367
40 Belgium 10.8566 133 Solomon Islands 25.9147
41 North Macedonia 11.0445 134 Nicaragua 25.9309
42 Republic of Moldova 11.1756 135 Jamaica 25.9316
43 Bulgaria 11.6592 136 Indonesia 26.004
44 Serbia 11.6974 137 Guinea 26.0131
45 Hungary 11.7723 138 Saudi Arabia 26.1472
46 France 11.8187 139 Saint Vincent and the Grenadines 26.2148
47 Japan 11.8711 140 Philippines 26.3329
48 Turkey 11.9075 141 Malaysia 26.4314
49 Croatia 12.2075 142 Grenada 26.5464
50 Republic of Korea 12.2962 143 Kuwait 26.5906
51 Lesotho 12.5138 144 Trinidad and Tobago 26.5966
52 Albania 12.6756 145 Barbados 26.6342
53 San Marino 13.0566 146 Suriname 26.6477
54 Azerbaijan 13.222 147 Sierra Leone 26.6797
55 Italy 13.4119 148 Dominica 26.8726
56 Afghanistan 13.6282 149 Thailand 26.8761
57 Uzbekistan 13.9651 150 Cote d’Ivoire 26.9202
58 Spain 14.2114 151 Brunei Darussalam 26.9852
59 Nepal 14.2922 152 Somalia 27.0193
60 Greece 14.496 153 Saint Lucia 27.0387
61 Argentina 15.1836 154 Seychelles 27.1844
62 Lebanon 15.6772 155 Antigua and Barbuda 27.2299
63 Portugal 15.962 156 Sri Lanka 27.3227
64 Uruguay 18.0634 157 Micronesia (Federated States of) 27.4212
65 Morocco 18.3188 158 Cambodia 27.4267
66 South Africa 18.3665 159 Nigeria 27.429
67 Iran (Islamic Republic of) 18.5974 160 Saint Kitts and Nevis 27.5032
68 Cyprus 19.213 161 Togo 27.5415
69 Rwanda 19.2878 162 Samoa 27.6558
70 Peru 19.7152 163 Chad 27.7122
71 Jordan 19.7263 164 Anguilla 27.7315
72 Malta 19.7581 165 Singapore 27.7658
73 Israel 20.1936 166 Kiribati 27.7873
74 Namibia 20.4999 167 Oman 27.7977
75 Burundi 20.5607 168 Ghana 27.8232
76 Tunisia 20.7226 169 Cayman Islands 27.8587
77 Bolivia (Plurinational State of) 20.7286 170 Guam 27.9084
78 Ecuador 21.4064 171 Bahrain 27.9947
79 Mexico 21.4203 172 Palau 28.0027
80 Pakistan 21.6066 173 Guinea-Bissau 28.1016
81 Bermuda 21.6165 174 Maldives 28.1118
82 Angola 21.7624 175 Niger 28.1119
83 Zimbabwe 21.9645 176 Benin 28.2218
84 Australia 22.126 177 Qatar 28.3141
85 Botswana 22.1703 178 United Arab Emirates 28.3934
86 Zambia 22.2209 179 Curacao 28.4456
87 Cabo Verde 22.5995 180 Gambia 28.5024
88 Malawi 22.7085 181 Djibouti 28.6181
89 Madagascar 22.7534 182 Mauritania 28.932
90 New Caledonia 22.7998 183 Senegal 29.0352
91 Libya 22.8822 184 Aruba 29.2154
92 United Republic of Tanzania 22.9835 185 Mali 29.3185
93 China, Macao SAR 23.1216 186 Burkina Faso 29.4243
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Table A2: Seasonally adjusted precipitation (Average of 2000-2022)

Rank Country Average Precipitation Rank Country Average Precipitation
1 Egypt 1.58416 94 Saint Kitts and Nevis 90.9624
2 Libya 3.04119 95 Georgia 91.1569
3 Oman 4.14045 96 Bolivia (Plurinational State of) 91.467
4 United Arab Emirates 4.56333 97 Bosnia and Herzegovina 91.9911
5 Qatar 5.17363 98 Norway 94.2066
6 Bahrain 5.98126 99 Austria 94.4094
7 Algeria 6.77072 100 India 94.5053
8 Saudi Arabia 8.03786 101 Paraguay 95.2152
9 Jordan 8.71642 102 Albania 95.8072
10 Kuwait 8.72337 103 Bahamas 97.3267
11 Mauritania 9.58924 104 Nigeria 98.3207
12 Niger 15.4792 105 United Kingdom of Great Britain and Northern Ireland 98.9496
13 Iraq 15.5076 106 Rwanda 100.436
14 Iran (Islamic Republic of) 17.0034 107 Ireland 100.578
15 Cabo Verde 17.0703 108 Iceland 101.564
16 Uzbekistan 17.7848 109 Switzerland 101.675
17 Djibouti 18.2405 110 Togo 101.738
18 Mongolia 18.4995 111 Ghana 102.191
19 Israel 21.6831 112 Burundi 103.427
20 Kazakhstan 21.6898 113 Timor-Leste 104.62
21 Tunisia 21.948 114 Uruguay 107.456
22 Somalia 23.7423 115 Nepal 107.887
23 Namibia 24.5275 116 Uganda 109.092
24 Pakistan 24.9875 117 Cote d’Ivoire 110.513
25 Morocco 25.8307 118 Montenegro 110.609
26 Afghanistan 26.874 119 French Polynesia 113.455
27 Mali 27.8309 120 Republic of Korea 115.346
28 Chad 30.0965 121 Slovenia 117.389
29 Botswana 33.7237 122 Kiribati 117.528
30 Aruba 36.7781 123 Madagascar 120.839
31 Malta 38.6694 124 Bermuda 121.786
32 South Africa 39.047 125 Cayman Islands 121.85
33 Greenland 39.2833 126 Dominican Republic 125.707
34 Cyprus 39.7406 127 Barbados 126.754
35 Australia 40.1806 128 Haiti 129.144
36 Kyrgyzstan 40.1945 129 New Zealand 132.622
37 Russian Federation 40.216 130 Peru 133.207
38 Republic of Moldova 40.6858 131 Cameroon 135.429
39 Azerbaijan 41.2747 132 Grenada 135.625
40 Canada 45.5465 133 Montserrat 135.821
41 Ukraine 46.3169 134 Seychelles 135.844
42 Armenia 46.8244 135 Congo 136.699
43 Curacao 48.5764 136 Thailand 137.007
44 Turkey 49.7109 137 Japan 137.785
45 Argentina 49.9785 138 El Salvador 138.859
46 Finland 50.4554 139 Guinea-Bissau 140.264
47 China, mainland 50.8826 140 New Caledonia 140.538
48 Poland 50.911 141 Tonga 145.887
49 Hungary 51.0383 142 Viet Nam 147.244
50 Spain 51.8904 143 Sri Lanka 147.547
51 Romania 53.6768 144 Brazil 148.192
52 Belarus 53.8412 145 Guinea 150.026
53 Sweden 54.5208 146 Honduras 153.314
54 Lebanon 55.0418 147 Lao People’s Democratic Republic 154.486
55 Bulgaria 55.8004 148 Bhutan 155.034
56 Estonia 55.8355 149 Gabon 156.087
57 Tajikistan 55.9068 150 Cambodia 160.578
58 Czechia 56.7299 151 China, Macao SAR 161.56
59 North Macedonia 56.9038 152 Trinidad and Tobago 166.089
60 Greece 56.9258 153 Cook Islands 167.055
61 Latvia 56.9609 154 Jamaica 167.718
62 Zimbabwe 57.0755 155 Mauritius 171.342
63 Lithuania 57.1005 156 Puerto Rico 171.39
64 Germany 60.4535 157 Saint Lucia 171.747
65 Denmark 61.0425 158 Belize 174.962
66 United States of America 61.711 159 Ecuador 175.564
67 Senegal 62.2175 160 China, Hong Kong SAR 176.062
68 Serbia 63.4319 161 Dominica 176.546
69 Kenya 63.433 162 Bangladesh 177.026
70 Slovakia 64.0894 163 Guatemala 180.9
71 Mexico 64.4959 164 Maldives 183.146
72 San Marino 65.7993 165 Sao Tome and Principe 190.454
73 Lesotho 66.221 166 Nicaragua 191.389
74 Italy 66.2613 167 Suriname 194.409
75 Netherlands (Kingdom of the) 66.6654 168 Panama 203.805
76 France 68.6868 169 Guam 205.736
77 Burkina Faso 70.1596 170 Saint Vincent and the Grenadines 206.469
78 Portugal 72.1241 171 Equatorial Guinea 208.4
79 Ethiopia 72.4137 172 Singapore 213.405
80 Belgium 74.9163 173 Colombia 217.474
81 Chile 75.4978 174 Sierra Leone 221.478
82 Luxembourg 78.4104 175 Fiji 222.13
83 United Republic of Tanzania 79.8806 176 Philippines 228.919
84 Mozambique 81.797 177 Vanuatu 230.315
85 Andorra 84.9084 178 Indonesia 236.678
86 Zambia 85.0413 179 Costa Rica 246.752
87 Gambia 85.5584 180 Malaysia 256.909
88 Benin 86.7411 181 Papua New Guinea 260.785
89 Angola 87.9853 182 Solomon Islands 265.313
90 Antigua and Barbuda 88.0692 183 Samoa 265.842
91 Malawi 88.4026 184 Brunei Darussalam 284.525
92 Anguilla 88.5845 185 Palau 297.306
93 Croatia 90.7543 186 Micronesia (Federated States of) 335.721
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Table A3: Seasonally adjusted food price inflation (Average of 2000-2022)

Rank Country Average Precipitation Rank Country Average Precipitation
1 Switzerland 0.035503 94 Philippines 0.359253
2 Ireland 0.062883 95 Equatorial Guinea 0.364825
3 Brunei Darussalam 0.071567 96 Algeria 0.370208
4 Japan 0.084726 97 Armenia 0.378314
5 Cook Islands 0.145585 98 Estonia 0.384214
6 Norway 0.157052 99 Guam 0.385498
7 New Caledonia 0.173362 100 Samoa 0.392875
8 France 0.175273 101 Djibouti 0.392932
9 Israel 0.178181 102 Libya 0.398751
10 Qatar 0.180149 103 Togo 0.402836
11 Belize 0.184282 104 Bulgaria 0.411349
12 Portugal 0.184333 105 Turkey 0.42376
13 Netherlands (Kingdom of the) 0.185154 106 Cameroon 0.426163
14 Montserrat 0.186902 107 Latvia 0.429214
15 Cambodia 0.187183 108 Bolivia (Plurinational State of) 0.430381
16 Denmark 0.188709 109 China, Hong Kong SAR 0.433411
17 Singapore 0.194818 110 San Marino 0.436322
18 Italy 0.198933 111 Solomon Islands 0.439653
19 Finland 0.20142 112 Seychelles 0.453697
20 Greece 0.201896 113 India 0.466774
21 Bahamas 0.202324 114 Honduras 0.470968
22 Sweden 0.204373 115 Trinidad and Tobago 0.471637
23 Kiribati 0.206507 116 Maldives 0.471803
24 Cyprus 0.207327 117 Mauritius 0.474323
25 Morocco 0.21158 118 Mexico 0.48976
26 Gabon 0.211921 119 Barbados 0.514045
27 Micronesia (Federated States of) 0.212828 120 Bhutan 0.514355
28 Puerto Rico 0.213329 121 Mauritania 0.515881
29 New Zealand 0.215651 122 Curacao 0.526886
30 Bahrain 0.216223 123 Bangladesh 0.529608
31 United States of America 0.216254 124 Hungary 0.533549
32 Chile 0.217267 125 Iraq 0.53565
33 Germany 0.217601 126 Botswana 0.539284
34 Greenland 0.219999 127 South Africa 0.567885
35 Saint Lucia 0.220815 128 Congo 0.573158
36 Andorra 0.221339 129 Indonesia 0.576825
37 Luxembourg 0.224277 130 Romania 0.57907
38 Belgium 0.225114 131 Viet Nam 0.581472
39 Austria 0.225389 132 Uganda 0.58368
40 Oman 0.225641 133 Namibia 0.593207
41 Benin 0.231165 134 Somalia 0.596168
42 Saint Kitts and Nevis 0.232616 135 Kyrgyzstan 0.596217
43 French Polynesia 0.232767 136 Nepal 0.596622
44 United Kingdom of Great Britain and Northern Ireland 0.233554 137 Georgia 0.606681
45 Grenada 0.237705 138 Cote d’Ivoire 0.610174
46 Panama 0.238642 139 Brazil 0.61521
47 Croatia 0.238684 140 Paraguay 0.630325
48 Australia 0.239186 141 Azerbaijan 0.637537
49 Tonga 0.239623 142 Gambia 0.65092
50 Cayman Islands 0.240316 143 Dominican Republic 0.655234
51 Mali 0.241685 144 Nicaragua 0.65638
52 Bosnia and Herzegovina 0.245456 145 United Republic of Tanzania 0.668084
53 Spain 0.248383 146 Guatemala 0.672728
54 Dominica 0.249084 147 Madagascar 0.677965
55 Czechia 0.253417 148 Afghanistan 0.68116
56 Malaysia 0.253815 149 Lesotho 0.695869
57 Bermuda 0.257469 150 Rwanda 0.717993
58 Antigua and Barbuda 0.262047 151 Burundi 0.731536
59 Montenegro 0.265475 152 Pakistan 0.732596
60 Canada 0.266163 153 Ecuador 0.733412
61 United Arab Emirates 0.266195 154 Kazakhstan 0.743672
62 Niger 0.266879 155 Republic of Moldova 0.754638
63 Jordan 0.267821 156 Jamaica 0.777795
64 Saint Vincent and the Grenadines 0.269046 157 Uruguay 0.785869
65 Senegal 0.270251 158 Mongolia 0.787543
66 Papua New Guinea 0.271336 159 Lao People’s Democratic Republic 0.801336
67 North Macedonia 0.272081 160 Mozambique 0.823841
68 Costa Rica 0.27482 161 Kenya 0.829673
69 Timor-Leste 0.282945 162 Sierra Leone 0.839312
70 Slovakia 0.289104 163 Russian Federation 0.841933
71 Anguilla 0.289788 164 Ukraine 0.910676
72 Burkina Faso 0.298251 165 Tunisia 0.914748
73 Palau 0.298283 166 Thailand 0.937923
74 Chad 0.300582 167 Sri Lanka 0.955863
75 Peru 0.302656 168 Egypt 0.97047
76 Poland 0.306182 169 Zambia 0.981611
77 Guinea-Bissau 0.306724 170 Serbia 1.0468
78 Saudi Arabia 0.307805 171 Uzbekistan 1.06141
79 Slovenia 0.309672 172 Haiti 1.08485
80 Cabo Verde 0.310741 173 Nigeria 1.08591
81 El Salvador 0.312097 174 Sao Tome and Principe 1.09627
82 China, Macao SAR 0.314014 175 Malawi 1.11538
83 Republic of Korea 0.31598 176 Ghana 1.12682
84 China, mainland 0.32056 177 Ethiopia 1.17492
85 Malta 0.325969 178 Guinea 1.24833
86 Albania 0.332992 179 Tajikistan 1.42755
87 Iceland 0.335825 180 Argentina 1.53896
88 Vanuatu 0.340129 181 Suriname 1.57901
89 Aruba 0.344824 182 Belarus 1.62807
90 Colombia 0.348865 183 Iran (Islamic Republic of) 1.81427
91 Fiji 0.355313 184 Lebanon 1.96889
92 Kuwait 0.356625 185 Zimbabwe 2.0508
93 Lithuania 0.358938 186 Angola 2.25786
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